Posts Subscribe to (PUT YOUR BLOG NAME HERE)Comments

Selasa, 19 Maret 2013

evolusi komputer generasi pertama sampai kelima

Sejarah Perkembangan Komputer Sebelum tahun 1940 Sejak dahulu kala, proses pengolahan data telah dilakukan oleh manusia. Manusia juga menemukan alat-alat mekanik dan elektronik untuk membantu manusia dalam penghitungan dan pengolahan data supaya dapat mendapatkan hasil lebih cepat. Komputer yang kita temui saat ini adalah suatu evolusi panjang dari penemuan penemuan manusia sejak dahulu kala berupa alat mekanik mahupun elektronik. Saat ini, komputer dan peranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan yang lebih dari sekedar perhitungan matematik biasa. Di antaranya adalah sistem komputer di pasar raya yang mampu membaca kod barang belanjaan, pusat telefon yang menangani jutaan panggilan dan komunikasi, serta jaringan komputer dan internet yang menghubungkan berbagai tempat di dunia. Komputer ada 4 golongan yaitu: 1. Peralatan manual: Iaitu peralatan pengolahan data yang sangat sederhana, dan faktor terpenting dalam pemakaian alat adalah menggunakan tenaga tangan manusia 2. Peralatan Mekanik: Iaitu peralatan yang sudah berbentuk mekanik yang digerakkan dengan tangan secara manual 3. Peralatan Mekanik Elektronik: Peralatan mekanik yang digerakkan oleh secara otomatis oleh motor elektronik 4. Peralatan Elektronik: Peralatan yang bekerjanya secara elektronik penuh Beberapa peralatan yang telah digunakan sebagai alat hitung sebelum ditemukannya komputer :

a. Abacus

Muncul sekitar 5000 tahun yang lalu di Asia kecil dan masih digunakan di beberapa tempat hingga saat ini, dapat dianggap sebagai awal mula mesin komputasi. Alat ini memungkinkan penggunanya untuk melakukan perhitungan menggunakan biji bijian geser yang diatur pada sebuh rak. Para pedagang di masa itu menggunakan abacus untuk menghitung transaksi perdagangan. Seiring dengan munculnya pensil dan kertas, terutama di Eropa, Abacus kehilangan popularitasnya.

b. Kalkulator roda numerik ( numerical wheel calculator )

Setelah hampir 12 abad, muncul penemuan lain dalam hal mesin komputasi. Pada tahun 1642, Blaise Pascal (1623-1662), yang pada waktu itu berumur 18 tahun, menemukan apa yang ia sebut sebagai kalkulator roda numerik (numerical wheel calculator) untuk membantu ayahnya melakukan perhitungan pajak.

c. Kalkulator roda numerik 2

Tahun 1694 seorang matematikawan dan filsuf Jerman, Gottfred Wilhem von Leibniz (1646-1716) memperbaiki Pascaline dengan membuat mesin yang dapat mengalikan. Sama seperti pendahulunya, alat mekanik ini bekerja dengan menggunakan roda-roda gerigi. Dengan mempelajari catatan dan gambar-gambar yang dibuat oleh Pascal, Leibniz dapat menyempurnakan alatnya.

d. Kalkulator Mekanik

Charles Xavier Thomas de Colmar menemukan mesin yang dapat melakukan empat fungsi aritmatik dasar. Kalkulator mekanik Colmar, arithometer, mempresentasikan pendekatan yang lebih praktis dalam kalkulasi karena alat tersebut dapat melakukan penjumlahan, pengurangan, perkalian, dan pembagian. Dengan kemampuannya, arithometer banyak dipergunakan hingga masa Perang Dunia I. Bersama-sama dengan Pascal dan Leibniz, Colmar membantu membangun era komputasi mekanikal.

Saat ini, komputer sudah semakin canggih. Tetapi, sebelumnya komputer tidak sekecil, secanggih, sekeren dan seringan sekarang. Dalam sejarah komputer, ada 5 generasi dalam sejarah komputer.

1. Generasi Pertama (1944-1959)

Tabung hampa udara sebagai penguat sinyal, merupakan ciri khas komputer generasi pertama. Pada awalnya, tabung hampa udara (vacum-tube) digunakan sebagai komponen penguat sinyal. Bahan bakunya terdiri dari kaca, sehingga banyak memiliki kelemahan, seperti: mudah pecah, dan mudah menyalurkan panas. Panas ini perlu dinetralisir oleh komponen lain yang berfungsi sebagai pendingin. Dan dengan adanya komponen tambahan, akhirnya komputer yang ada menjadi besar, berat dan mahal. Pada tahun 1946, komputer elektronik didunia yang pertama yakni ENIAC sesai dibuat. Pada komputer tersebut terdapat 18.800 tabung hampa udara dan berbobot 30 ton. begitu besar ukurannya, sampai-sampai memerlukan suatu ruangan kelas tersendiri. Pada gambar nampak komputer ENIAC, yang merupakan komputer elektronik pertama didunia yang mempunyai bobot seberat 30 ton, panjang 30 M dan tinggi 2.4 M dan membutuhkan daya listrik 174 kilowatts.

2. Generasi Kedua (1960-1964)

Transistor merupakan ciri khas komputer generasi kedua. Bahan bakunya terdiri atas tiga lapis, yaitu: “basic”, “collector” dan “emmiter”. Transistor merupakan singkatan dari Transfer Resistor, yang berarti dengan mempengaruhi daya tahan antara dua dari tiga lapisan, maka daya (resistor) yang ada pada lapisan berikutnya dapat pula dipengaruhi. Dengan demikian, fungsi transistor adalah sebagai penguat sinyal. Sebagai komponen padat, tansistor mempunyai banyak keunggulan seperti misalnya: tidak mudah pecah, tidak menyalurkan panas. dan dengan demikian, komputer yang ada menjadi lebih kecil dan lebih murah. Pada tahun 1960-an, IBM memperkenalkan komputer komersial yang memanfaatkan transistor dan digunakan secara luas mulai beredar dipasaran. Komputer IBM- 7090 buatan Amerika Serikat merupakan salah satu komputer komersial yang memanfaatkan transistor. Komputer ini dirancang untuk menyelesaikan segala macam pekerjaan baik yang bersifat ilmiah ataupun komersial. Karena kecepatan dan kemampuan yang dimilikinya, menyebabkan IBM 7090 menjadi sangat popular. Komputer generasi kedua lainnya adalah: IBM Serie 1400, NCR Serie 304, MARK IV dan Honeywell Model 800.

3. Generasi Ketiga (1964-1975)

Konsep semakin kecil dan semakin murah dari transistor, akhirnya memacu orang untuk terus melakukan pelbagai penelitian. Ribuan transistor akhirnya berhasil digabung dalam satu bentuk yang sangat kecil. Secuil silicium yag mempunyai ukuran beberapa milimeter berhasil diciptakan, dan inilah yang disebut sebagai Integrated Circuit atau IC-Chip yang merupakan ciri khas komputer generasi ketiga. Cincin magnetic tersebut dapat di-magnetisasi secara satu arah ataupun berlawanan, dan akhirnya men-sinyalkan kondisi “ON” ataupun “OFF” yang kemudian diterjemahkan menjadi konsep 0 dan 1 dalam system bilangan biner yang sangat dibutuhkan oleh komputer. Pada setiap bidang memory terdapat 924cincin magnetic yang masing-masing mewakili satu bit informasi. Jutaan bit informasi saat ini berada didalam satu chip tunggal dengan bentuk yang sangat kecil. Komputer yang digunakan untuk otomatisasi pertama dikenalkan pada tahun 1968 oleh PDC 808, yang memiliki 4 KB (kilo-Byte) memory dan 8 bit untuk core memory. Dapat digunakan untuk multiprogram. Contoh komputer generasi ketiga adalah Apple II, PC, dan NEC PC.

4. Generasi Keempat (1975-Sekarang)

Komputer generasi keempat masih menggunakan IC/chip untuk pengolahan dan penyimpanan data. Komputer generasi ini lebih maju karena di dalamnya terdapat beratus ribu komponen transistor. Proses pembuatan IC komputer generasi ini dinamakan pengintegrasian dalam skala yang sangat besar. Pengolahan data dapat dilakukan dengan lebih cepat atau dalam waktu yang singkat. Media penyimpanan komputer generasi ini lebih besar dibanding generasi sebelumnya. Komputer generasi ini sering disebut komputer mikro. Contohnya adalah PC (Personal Computer). Teknologi IC komputer generasi ini yang membedakan antara komputer mikro dan komputer mini serta main frame. Beberapa teknologi IC pada generasi ini adalah Prosesor 6086, 80286, 80386, 80486, Pentium I, Celeron, Pentium II, Pentium III, Pentium IV, Dual Core, dan Core to Duo. Generasi ini juga mewujudkan satu kelas komputer yang disebut komputer super.

5. Generasi Kelima (Sekarang – Masa depan)

Generasi kelima dalam sejarah evolusi komputer merupakan komputer impian masa depan. Ia diperkirakan mempunyai lebih banyak unit pemprosesan yang berfungsi bersamaan untuk menyelesaikan lebih daripada satu tugas dalam satu masa. Komputer ini juga mempunyai ingatan yang amat besar sehingga memungkinkan penyelesaian lebih dari satu tugas dalam waktu bersamaan. Unit pemprosesan pusat juga dapat berfungsi sebagai otak manusia. Komputer ini juga mempunyai kepandaian tersendiri, merespon keadaan sekeliling melalui penglihatan yang bijak dalam mengambil sesuatu keputusan bebas dari pemikiran manusia yang disebut sebagai artificial intelligence. Banyak kemajuan di bidang desain komputer dan teknologi semakin memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model von Neumann. Model von Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi. Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia. Kita tunggu informasi mana yang lebih valid dan membuahkan hasil.

sumber:http://majuterusindonesiaku.blogspot.com/2012/03/perkembangan-komputer-dari-awal-hingga.html

Read More “evolusi komputer generasi pertama sampai kelima”  »»

BIOINFORMATIKA

Bioinformatika merupakan ilmu terapan yang lahir dari perkembangan teknologi informasi dibidang molekular. Pembahasan dibidang bioinformatik ini tidak terlepas dari perkembangan biologi molekular modern, salah satunya peningkatan pemahaman manusia dalam bidang genomic yang terdapat dalam molekul DNA.

Kemampuan untuk memahami dan memanipulasi kode genetik DNA ini sangat didukung oleh teknologi informasi melalui perkembangan hardware dan soffware. Baik pihak pabrikan sofware dan harware maupun pihak ketiga dalam produksi perangkat lunak. Salah satu contohnya dapat dilihat pada upaya Celera Genomics, perusahaan bioteknologi Amerika Serikat yang melakukan pembacaan sekuen genom manusia yang secara maksimal memanfaatkan teknologi informasi sehingga bisa melakukan pekerjaannya dalam waktu yang singkat (hanya beberapa tahun).

Perkembangan teknologi DNA rekombinan memainkan peranan penting dalam lahirnya bioinformatika. Teknologi DNA rekombinan memunculkan suatu pengetahuan baru dalam rekayasa genetika organisme yang dikenala bioteknologi.Perkembangan bioteknologi dari bioteknologi tradisional ke bioteknologi modren salah satunya ditandainya dengan kemampuan manusia dalam melakukan analisis DNA organisme, sekuensing DNA dan manipulasi DNA. Sekuensing DNA satu organisme, misalnya suatu virus memiliki kurang lebih 5.000 nukleotida atau molekul DNA atau sekitar 11 gen, yang telah berhasil dibaca secara menyeluruh pada tahun 1977. Kemudia Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun, walaupun semua ini belum terlalu lengkap. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982.

Bioinformatika ialah ilmu yang mempelajari penerapan teknik komputasi untuk mengelola dan menganalisis informasi hayati. Bidang ini mencakup penerapan metode-metodematematika, statistika, dan informatika untuk memecahkan masalah-masalah biologi, terutama yang terkait dengan penggunaan sekuens DNA dan asam amino. Contoh topik utama bidang ini meliputi pangkalan data untuk mengelola informasi hayati, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan struktur protein atau pun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

Bioinformatika pertamakali dikemukakan pada pertengahan 1980an untuk mengacu kepada penerapan ilmukomputer dalam bidang biologi. Meskipun demikian, penerapan bidang-bidang dalam bioinformatika seperti pembuatan pangkalan data dan pengembangan algoritmauntuk analisis sekuens biologi telah dilakukan sejak tahun1960an.

Kemajuan teknik biologi molekuler dalam mengungkap sekuens biologi protein (sejak awal 1950an) dan asam nukleat(sejak 1960an) mengawali perkembangan pangkalan data dan teknik analisis sekuens biologi. Pangkalan data sekuens protein mulai dikembangkan pada tahun 1960an di Amerika Serikat, sementara pangkalan data sekuens DNA dikembangkan pada akhir 1970an di Amerika Serikat dan Jerman pada Laboratorium Biologi Molekuler Eropa (European Molecular Biology Laboratory).

Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang dapat diungkapkan pada 1980an dan 1990an. Hal ini menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, yang meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Perkembangan jaringan internet juga mendukung berkembangnya bioinformatika. Pangkalan data bioinformatika yang terhubungkan melalui internet memudahkan ilmuwan dalam mengumpulkan hasil sekuensing ke dalam pangkalan data tersebut serta memperoleh sekuens biologi sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui internet memudahkan ilmuwan dalam mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

Pangkalan Data sekuens biologi dapat berupa pangkalan data primer untuk menyimpan sekuens primer asam nukleatdan protein, pangkalan data sekunder untuk menyimpan motif sekuens protein, dan pangkalan data struktur untuk menyimpan data struktur protein dan asam nukleat.

Pangkalan data utama untuk sekuens asam nukleat saat ini adalah GenBank (Amerika Serikat), EMBL (the European Molecular Biology Laboratory, Eropa), dan DDBJ (DNA Data Bank of Japan, Jepang). Ketiga pangkalan data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing pangkalan data. Sumber utama data sekuens asam nukleat adalah submisi (pengumpulan) langsung dari peneliti individual, proyek sekuensing genom, dan pendaftaran paten.

Selain berisi sekuens asam nukleat, entri dalam pangkalan data sekuens asam nukleat pada umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan segala sesuatu yang berkaitan dengan sekuens asam nukleat tersebut.

Selain asam nukleat, beberapa contoh pangkalan data penting yang menyimpan sekuens primer protein adalah PIR(Protein Information Resource, Amerika Serikat), Swiss-Prot(Eropa), dan TrEMBL (Eropa). Ketiga pangkalan data tersebut telah digabungkan dalam UniProt, yang didanai terutama oleh Amerika Serikat. Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang pada umumnya berisi penjelasan mengenai fungsi protein tersebut.

Perangkat bioinformatika yang berkaitan erat dengan penggunaan pangkalan data sekuens Biologi ialah BLAST(Basic Local Alignment Search Tool). Penelusuran BLAST (BLAST search) pada pangkalan data sekuens memungkinkan ilmuwan untuk mencari sekuens baik asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasilsekuensing atau untuk memeriksa fungsi gen hasil sekuensing.Algoritma yang mendasari kerja BLAST adalah penyejajaran sekuens.

PDB (Protein Data Bank, Bank Data Protein) ialah pangkalan data tunggal yang menyimpan model struktur tiga dimensi protein dan asam nukleat hasil penentuan eksperimental (dengan kristalografi sinar-X, spektroskopi NMR, dan mikroskopi elektron). PDB menyimpan data struktur sebagai koordinat tiga dimensi yang menggambarkan posisiatom-atom dalam protein atau pun asam nukleat.

sumber:http://tkj-informatika.blogspot.com

Read More “BIOINFORMATIKA”  »»

 

bruce lee tips

Dark Side Blogger Template

virtual sonic

Dark Side Blogger Template

Dark Side Blogger Template Copyright 2009 - Rizki blog is proudly powered by Blogger.com Edited By Belajar SEO